
Coordination and Control of Multiple UAVs
with Timing Constraints and Loitering

Mehdi Alighanbari, Yoshiaki Kuwata, and Jonathan P. How
Space Systems Laboratory,

Massachusetts Institute of Technology
{ mehdi a, kuwata, jhow}@mit.edu

Abstract
This paper describes methods for optimizing the task
allocation problem for a fleet of Unmanned Aerial Vehi-
cles (UAVs) with tightly coupled tasks and rigid relative
timing constraints. The overall objective is to minimize
the mission completion time for the fleet, and the task
assignment must account for differing UAV capabilities
and no-fly zones. Loitering times are included as extra
degrees of freedom in the problem to help meet the tim-
ing constraints. The overall problem is formulated us-
ing Mixed-integer Linear Programming (MILP), which
gives the globally optimal solution. An approximate
decomposition solution method is also used to over-
come the computational issues that arise when using
MILP for larger problems. The problem is also posed
in a way that can be solved using Tabu search. This
approach is demonstrated to provide good solutions in
reasonable computation times for large problems that
are very difficult to solve using the exact or approxi-
mate decomposition methods.

1 Introduction
The capabilities and roles of UAVs are evolving, and
new methods in planning and execution are required to
coordinate the operation of a fleet of UAVs [1]. This
paper presents results on guidance and control of fleets
of cooperating UAVs. This includes the goal assign-
ment, resource allocation, and trajectory optimization
problems. For many vehicles, obstacles, and targets,
fleet coordination is a very complicated optimization
problem [1, 2], and the computation time increases very
rapidly with the problem size. As discussed in this pa-
per, the situation is further complicated if the tasks:

• Are strongly coupled – e.g., a waypoint must be
visited three times, first by a type 1 UAV, fol-
lowed by a type 2 and then a type 3.

• Have tight relative timing constraints – e.g., must
assign three UAVs to strike a target from three
different directions within 2 seconds of each other.

These tend to cause significant problems (e.g., “churn-
ing” and/or infeasible solutions) for the approximate
assignment algorithms based on “myopic algorithms”
that have recently been developed [3] – especially to-
wards the end of missions.

MILP provides a natural language for codifying these
various mission objectives and constraints using a com-

bination of binary and continuous variables [2, 4, 5].
Optimal solutions can be obtained to these problems
using commercially available software such as CPLEX,
but approximate techniques are required for real-time
applications. This paper extends an approximate de-
composition algorithm [2, 5] to include these relative
timing constraints and adds extra degrees of freedom
to the formulation that allow the UAVs to loiter dur-
ing the mission. Impacts on the computational time
by adding these timing constraints to the problem are
demonstrated in a complex example with 6 UAVs and
12 waypoints. Tabu search techniques [6] are also inves-
tigated to solve the tightly coupled assignment prob-
lems for scenarios with a large number of UAVs and
waypoints (and a large number of permutations and
combinations) for which the decomposition method also
becomes computationally intractable.

2 Problem Formulation
This section describes how the multiple vehicle routing
problems with relative timing constraints and loitering
can be written as a MILP. The algorithms assume that
the team partitioning has already been performed, and
that a set of tasks has been identified that must be
performed by the team. The overall objective is to as-
sign one set of ordered waypoints to each vehicle that
is combined into the mission plan, and adjust the loiter
times for the team such that the cost of the mission
is minimized and the time of task execution at each
waypoint satisfies the timing constraints.
2.1 Algorithm Overview
There are three main phases in our algorithm [2, 5]: (I)
cost calculation, (II) planning and pruning, and (III)
task assignment.
I-1. Find the visibility graph between the UAV start-

ing positions, waypoints, and obstacle vertices.
I-2. Using the Dijkstra’s algorithm, calculate the

shortest length of the all feasible paths between
waypoints, and form the cost table.

II-1. Obtain feasible combinations of waypoints, ac-
counting for the capability and the maximum
number of waypoints per UAV.

II-2. Enumerate all feasible permutations from these
combinations, subject to the timing constraints.

Time of arrival

Loiter time

(Fly at max speed)

TOEj of waypoint i

Flight time

TOEi

at waypoint i

time

Fig. 1: Flight time, loiter time, time of arrival, and
time of task execution.

II-3. Calculate cost for each permutation using the
cost table obtained in phase I.

II-4. Select the np best permutations for each combi-
nation.

III-1. Solve the task allocation problem using an opti-
mization solver.

III-2. Solve for the each UAV’s trajectory (e.g. using
straight line segments).

Let there be NV UAVs and NW waypoints. At the end
of phase II, four matrices with the same column length
NM are produced whose jth columns, taken together,
fully describe one permutation of waypoints. These are
the row vector u, whose uj entry identifies which UAV
is involved in the jth permutation; NW × NM matrix
V, whose Vij entry is 1 if waypoint i is visited by per-
mutation j, and 0 if not; NW × NM matrix T, whose
Tij entry is the time at which waypoint i is visited by
permutation j assuming there is no loitering, and 0 if
waypoint i is not visited; and the row vector c, whose
cj entry is the completion time for the jth permutation,
again, assuming there is no loitering.

2.2 Decision Variables
Selection of the Permutations: In order to assign
one permutation to each vehicle, the NM × 1 binary
decision vector x is introduced whose xj equals 1 if
permutation j is selected, and 0 otherwise. Each way-
point must be visited once, and each vehicle must be
assigned to one permutation, so

NM∑
j=1

Vijxj = 1 , i = 1, . . . , NW (1)

Np+1−1∑
j=Np

xj = 1 , p = 1, . . . , NV (2)

where the permutations of pth vehicle are numbered Np

to Np+1 − 1, with N1 = 1 and NNV +1 − 1 = NM .

Loitering time: As shown in Fig. 1, the loiter time
at waypoint i is defined as the time difference between
time of the task execution and the time of arrival at
waypoint i. The UAVs are assumed to fly at the max-
imum speed between waypoints, and loiter before ex-
ecuting the task. Note that it can also be regarded
as flying at a slower speed between the waypoints, or
loitering at the previous waypoint, flying towards the
waypoint at the maximum speed vmax, and executing
the task.

Introduce the NW × NV loitering matrix L, whose Lij

element expresses the loiter time at the ith waypoint
when visited by UAV j, as a set of new decision vari-
ables (Lij = 0 if waypoint i is not visited by UAV j).
The loitering matrix ensures that it is always possible to
find a feasible solution as long as the timing constraints
are consistent. In the MILP formulation, the time of
the task execution at waypoint i, TOE i, is written as

TOE i =
NM∑
j=1

Tij xj + LB i , i = 1, . . . , NW (3)

where the first term expresses the flight time from the
start point to waypoint i at vmax, and LB i is the sum of
the loiter times before executing the task at waypoint i.

Define the set W such that Wi is the list of waypoints
visited on the way to waypoint i (including i), so that

LB i =
∑

j∈Wi

NV∑
k=1

Ljk , i = 1, . . . , NW (4)

Only one UAV is assigned to each waypoint, and each
row of L has only one non-zero element. To express
the logical statement “on the way to”, we introduce
a large number M , and convert the one equality con-
straint Eq. (4) into two inequality constraints

LB i ≤
NW∑
j=1

(
Oijp

NV∑
k=1

Ljk

)
+ M

(
1 −

NM∑
p=1

Vipxp

)
(5)

and

LB i ≥
NW∑
j=1

(
Oijp

NV∑
k=1

Ljk

)
− M

(
1 −

NM∑
p=1

Vipxp

)
(6)

where O is a three dimensional binary matrix that ex-
presses waypoint orderings, and Oijp = 1 if waypoint j
is visited before waypoint i (including i = j) by permu-
tation p, and 0 if not. When waypoint i is visited by
permutation p, the second term on the right-hand side
of the constraints in Eqs. 5 and 6 disappears, producing
the equality constraint

LB i =
NW∑
j=1

(
Oijp

NV∑
k=1

Ljk

)
(7)

which is the same as Eq. (4). Note that when waypoint
i is not visited by permutation p, Oijp = 0 for all j and
Vip = 0, so that both of the inequality constraints are
relaxed and LB i is not constrained.

2.3 Timing Constraints
The timing constraints of interest in this application
are relative, as opposed to the absolute ones often con-
sidered [7, 8, 9], and they are written as

TOECk2 ≥ TOECk1 + dk , k = 1, . . . , NC (8)

WP1

WP2

WP3

WP4

WP5

WP6

WP7

WP8

WP9

WP10

WP11

WP12

Veh1

Veh2

Veh3

Veh4

Veh5

Veh6

UAV Coordination w/ Approximate Costs
 Mission Time = 23.90

:
:
:

(17.0)

(11.7)

(21.5)

(19.8)

(22.1)

(21.5)

(10.6)

(16.2)

(19.0)

(20.8)

(13.8)

(23.9)

(a)

WP1

WP2

WP3

WP4

WP5

WP6

WP7

WP8

WP9

WP10

WP11

WP12

Veh1

Veh2

Veh3

Veh4

Veh5

Veh6

UAV coordination w/ approximate costs
 Mission Time = 28.04

(12.1)

(24.9)

(12.1)

(12.1)

(24.9)

(24.9)

(24.9)

(24.9)

(28.0) (28.0)

(18.4) (18.4)

(16.6) (16.6) (16.6)

(14.8)

(b)

Fig. 2: Scenario with 6 heterogeneous UAVs & 12
waypoints. (a) No timing constraints. Solved in 2sec.
(b) 11 timing constraints. Solved in 13sec.

where each row of matrix C and vector d represents a
dependency between two waypoints. If the kth row of
C is [i j], Eq.(8) becomes TOE j ≥ TOE i +dk. Note
that dk can also be negative. This formulation allows
us to encode very general relative timing constraints.
Although each waypoint i has only one time of execu-
tion TOE i associated with it, this formulation can be
used to describe several visits with timing constraints
by putting multiple waypoints at that location.
2.4 Cost Function
The cost J to be minimized in the optimization is

J = max
k∈{1,...,NV }

tFk
+

α

NV

NM∑
i=1

cixi+
β

NW

NV∑
j=1

NW∑
i=1

Lij (9)

where the first term gives the maximum completion
time of the team, the second gives the average comple-
tion time, and the third gives the total loiter times. If
the penalty α ≥ 0 on average flight time were omitted,
the solution could assign unnecessarily long trajectories
to all UAVs except for the last to complete its mission.
Similarly, β ≥ 0 can be used to include an extra penalty
that avoids excessive loitering.

3 Simulation Results
This section presents results from several simulations
using the formulation in Section 2. The problems were
solved using CPLEX (v7.0) running on a 2.2GHz PC
with 512MB RAM. The first result investigates how the
timing constraints impact the solution times. The sec-
ond considers the relationship between the complexity
of timing constraints and the computation time.
3.1 Problems with and without timing con-
straints
A large scenario that includes a fleet of 6 UAVs of 3
different types and 12 waypoints is used as our base-
line. The UAV capabilities are shown in Fig. 2(a) (top
left). There are also several obstacles in the environ-
ment. The objective is to allocate waypoints to the
team of UAVs in order to visit every waypoint once and
only once in the minimum amount of time. For conve-
nience, this problem without timing constraints will be

referred to as the “original” problem. Fig. 2(a) shows
the solution of this original problem. All waypoints are
visited subject to the vehicle capabilities in 23.90 time
units. Time of task execution of each waypoint is also
shown beside the waypoint in the figure.

The problem with simultaneous arrival and ordered
task was also considered. Timing constraints in this
scenario are as follows:

1. Wpts 1, 7, 2 must be visited at same time.
2. Wpts 4, 8, 12 must be visited at same time.
3. Wpts 9, 11 must be visited at same time.
4. Wpts 4, 8, 12 must be visited before Wpts 9, 11.

The solution in this case is shown in Fig. 2(b), which is
quite different from Fig. 2(a). In Fig. 2(a), UAV3 vis-
its waypoints 4, 8, and 12, whereas in Fig. 2(b), three
UAVs are assigned to these three waypoints since they
must all be visited at the same time. More UAVs are
assigned to the waypoints in the lower half of the fig-
ure in Fig. 2(a) than in Fig. 2(b) since the priority of
waypoints 4, 8, 12 are higher than that of waypoints
9, 11 as a result of the timing constraints. Also, way-
point 4 is visited by UAV6, which is the farthest from
it. The mission time for this scenario increased to 28.04
time units, and the computation time increased from 2
seconds to 13 seconds. To solve this problem in a rea-
sonable time, the following approximations were made:

• Select only 1 best feasible permutation per com-
bination.

• If there is a timing constraint TOE i ≥ TOE j +
tD (tD ≥ 0), then the UAVs can loiter only at
waypoint i.

In order to satisfy the many timing constraints, 4 UAVs
loiter at 6 waypoints. UAV1 loiters on its way to way-
point 7 and 8, and UAV3 loiters on its way to way-
points 1 and 12. If time adjustment is allowed only on
the initial position as in Ref. [2], a feasible solution can-
not be found in this scenario. Since the loiter matrix L
allows UAVs to loiter at any of the waypoints with tim-
ing constraints, problems with strongly coupled timing
constraints are always solvable.

3.2 Complexity of Adding Timing Constraints
To investigate the impact of the timing constraints on
the performance and computation time, we measured
the computation time for the problem in Section 3.1,
with these four timing constraints:

Case – 1: TOE i ≥ TOE j
Case – 2: TOE i ≥ TOE j + 10
Case – 3: TOE i ≥ TOE j ≥ TOE k
Case – 4: TOE i ≥ TOE j + 5 ≥ TOE k + 10

In each case, all feasible combinations of waypoints (i,
j) or (i, j, k) were tested as the points associated with
the timing constraints. The results are summarized in
the histograms of Figures 3–6.

Figs. 3(a), 4(a), 5(a), and 6(a) show the results when
all loitering times are included in the problem. Since
there are 12 waypoints and 6 UAVs with different ca-
pabilities, there are 52 extra degrees of freedom in the

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

TOA
 i
 ≥ TOA

 j

pe
rc

en
ta

ge
 (

%
)

(a)

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

pe
rc

en
ta

ge
 (

%
)

(b)

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

pe
rc

en
ta

ge
 (

%
)

(c)

Fig.3:

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

TOA
 i
 ≥ TOA

 j
+10

pe
rc

en
ta

ge
 (

%
)

(a)

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

pe
rc

en
ta

ge
 (

%
)

(b)

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

pe
rc

en
ta

ge
 (

%
)

(c)

Fig.4:

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

TOA
 i
 ≥ TOA

 j
 ≥ TOA

 k

pe
rc

en
ta

ge
 (

%
)

(a)

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

pe
rc

en
ta

ge
 (

%
)

(b)

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

pe
rc

en
ta

ge
 (

%
)

(c)

Fig.5:

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

TOA
 i
 ≥ TOA

 j
+5 ≥ TOA

 k
+10

pe
rc

en
ta

ge
 (

%
)

(a)

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

pe
rc

en
ta

ge
 (

%
)

(b)

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

pe
rc

en
ta

ge
 (

%
)

(c)

Fig.6:
Histograms of case 1–4 from left to right – (a) shows
the computation time [sec] for the problem with no
constraints on the loitering times; (b) shows the com-
putation time [sec] for the problem with constrained
loitering; and (c) shows the degree of “unnaturalness”.

decision variable L. Figs. 3(b), 4(b), 5(b), and 6(b)
show the results when the constrained form of the loi-
tering is used. This reduces the degrees of freedom in
the loiter matrix L from 52 to 8–12, depending on the
type of constraints.

Comparing Figs. 3(a), (b) with Figs. 4(a), (b), and,
Figs. 5(a), (b) with Figs. 6(a), (b), it is clear that the
computation time increases as more complicated timing
constraints are imposed on the tasks (either by increas-
ing the time gaps or by increasing the number of related
tasks). With fewer degrees of freedom, the constrained
loitering approach solves faster by a factor of two.

To approximately determine the complexity of these
constraints, we introduce the concept of the “unnat-
uralness” of the timing constraints, which is a mea-
sure of the degree to which the timing constraints are
violated by the solution of the original problem. Us-
ing the solution of the original problem to obtain the
times associated with waypoints i and j (TOE i

′ and
TOE j

′), define the unnaturalness of a timing constraint
TOE i ≥ TOE j + tD as

max
{
TOE j

′ + tD − TOE i
′, 0
}

(10)

If the solution of the original problem happens to satisfy
the timing constraint, the unnaturalness is 0. The sum
of the unnaturalness of each timing constraint is used
as a measure of the unnaturalness for the constrained
problem. Note that other metrics such as the number
of timing constraints, and the extent to which they are
tightly coupled together can be misleading if the results
are “naturally” satisfied by the solution to the uncon-
strained problem. The metric in Eq. (10) gives a direct
(albeit approximate) measure of the extent to which
the solution must be changed to satisfy the additional

timing constraints.

Figs. 3(c), 4(c), 5(c), and 6(c) show four histograms
that give the unnaturalness of the basic problem with
timing constraints (cases 1 – 4). The shapes of the
4 histograms reflect the computation time required to
solve these problem. In particular, as the distribution of
the unnaturalness shifts towards the right (Fig. 3(c)→
4(c) and 5(c)→ 6(c)), the distribution of the computa-
tion time also shifts to the right (Fig. 3(b)→ 4(b) and
5(b)→ 6(b)). Further observations include:

• If all of the timing constraints are natural, then
the computation time does not increase signifi-
cantly, even if there are many timing constraints.

• If all the timing constraints are natural, the best
permutation is always feasible without pruning
by timing constraints, but that is not the case if
there are unnatural timing constraints.

• Additional permutations can be kept to account
for unnatural timing constraints, but simulation
results have shown that this can cause a combi-
natorial explosion and rapidly increase the com-
putation time with a marginal improvement in
performance.

The results show that this algorithm can solve the
problem of UAV assignment with relative timing con-
straints. It was shown that increasing the number of
timing constraints and the degree of “unnaturalness”
makes the problem harder to solve, but the proposed
algorithm can still be used to obtain the globally opti-
mal solution.

4 Tabu Search for the UAV Problem
The UAV assignment problem discussed in the previ-
ous sections is a generalization of the vehicle routing
problem, which is NP-hard. Thus finding the opti-
mal solution to this problem using exact methods is
computationally infeasible for large fleets, and even the
decomposition methods discussed in Section 2 becomes
intractable when the number of permutations and com-
binations increase. However, several researchers have
demonstrated that the Tabu search method can be used
to rapidly obtain sub-optimal solutions of the VRP
problem [10]. This section formulates the UAV prob-
lem of Sections 2 and 3 as a VRP with relative timing
constraints and uses modified Tabu algorithms to solve
this problem.

4.1 Tabu Search Method
Glover first proposed the basic ideas of Tabu search [6]
and the algorithm has been studied extensively because
it has proven to be an effective heuristic for solving
combinatorial optimization problems such as schedul-
ing, telecommunications, transportation and network
problems [6]. The Tabu method searches a neighbor-
hood of a given solution for a better feasible solution,
which is the basis for many solution algorithms. The
neighborhood of a solution is defined to be all solutions
that can be reached in a single move, where the defini-
tion of a move is problem specific (i.e., changing one bit

from 1 to 0, or swapping the position of two elements in
a vector). The problem with most neighborhood meth-
ods of this type is that they can get trapped in a local
minimum, and loop endlessly. To prevent this looping
between the same solutions, Tabu search uses the con-
cept of memory and a Tabu list. The detailed discussion
on Tabu search method can be found in [6].

4.2 Problem Formulation
Suppose there are NW waypoints and NV UAVs. We
represent a solution to the problem as a sequence of
UAVs and waypoints, as shown in Fig. 7. The sequence
consists of a list of UAV numbers followed by the way-
points that it visits (in order). If a UAV number is im-
mediately followed by another UAV number, then the
first vehicle does not visit any waypoints. The Tabu
search algorithm in [7] is used in our implementation.

2 3 4 87 95 61
UAV1 UAV2 UAV3WP1 WP4WP3WP2 WP6WP5

Fig. 7: Solution sequence when UAV1 visits WP1,
WP2, WP3; UAV2 does not visit any waypoints; and
UAV3 visits WP4, WP5, WP6.

The objective function to be minimized here is the fleet
completion time:

J = max
i

(finishi) +
α

NV

∑
i

(finishi)

where, finishi is the time that UAVi finishes its mis-
sion and α
 1 scales the average completion time
compared to maximum completion time.
4.3 Adding Side Constraints
The type of timing constraints implemented in this
algorithm are the same as introduced in Section 2.3.
There are two different ways to deal with these con-
straints, one is to treat them as hard constraints and
exclude any solution that violates them. An alternative
is to treat them as soft constraints and add a penalty to
the objective functions for the solution that violate the
constraints [7]. One advantage of using soft constraints
is that the initial solution does not have to be a feasi-
ble solution. This is important in cases that finding a
feasible solution itself is difficult. Another advantage of
soft constraints is that the algorithm is not restricted
to feasible regions and can move through an infeasible
region to find a better feasible solution. Our algorithm
treats the timing constraints as soft constraints. In this
case, if there is a constraint on waypoint i being visited
after j, but in a solution we have startj > starti

(starti represents the time that waypoint i is visited),
then a penalty is added to the objective value of this
solution. By increasing the magnitude of this penalty,
we can move from soft to hard timing constraints.

The problem formulation also includes capability con-
straints on the different UAVs, which have a significant
impact on the solution of the assignment problem. The

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10
f* = 40.431936

12

3

4

5

6

UAV2

UAV1

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10
f* = 36.421704

12

3

4

5

6

UAV1

UAV2

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10
f* = 39.889509

12

3

4

5

6

UAV1

UAV2

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10
f* = 40.600291

12

3

4

5

6

UAV1

UAV2

Fig. 8: Results of Tabu search applied to four simple
problems with heterogeneous UAVs and relative timing
constraints.
UAV capabilities are given by the binary matrix K.
Similar to the timing constraints, the UAV capabilities
can be added in two ways. If, in a solution, waypoint x
is in the list of missions for a UAV of type i that is not
capable of visiting that waypoint (i.e., Kix = 0), then
the solution is either rejected or kept as a solution with
a penalty for violating the constraint.

In the environments with obstacles, Tabu search can
be applied with a slight change in the algorithm. A
matrix that represents the distance between all pairs
of points is given to the algorithm as an input. In the
case that there is no obstacle, these distances are simply
straight lines between the two points. But when there
are obstacles, these distances can be calculated using
visibility graph and Dijkstra’s algorithm, as discussed
earlier.

4.4 Simulation Results
To show different capabilities of the algorithm for this
application, it is first applied to a small problem. Fig. 8
shows the result of a UAV assignment problem for a
small fleet facing four different scenarios. There are
two UAVs and four waypoints, and the objective is to
minimize the mission completion time. The top left
figure shows the result for the scenario in which the
two UAVs have the same capabilities and there are no
timing constraints. As expected, one UAV visits the
waypoints at the top and the other UAV visits the ones
at the bottom. The top right figure shows the solu-
tion of the same problem with timing constraints not
satisfied by the solution to the first problem. In this
scenario, waypoint 5 is constrained to be visited after
waypoints 4 and 6. As shown, the cost has increased
compared to the first scenario, but the constraints are
now satisfied. The bottom left figure shows the scenario
without the timing constraint, but with heterogeneous
UAVs. In this scenario, UAV1 is capable of visiting all
the waypoints, while UAV2 can just visit waypoints 3
and 4. Therefore UAV2 visits the waypoints that it is
capable of visiting and UAV1 visits the rest. The bot-

0 50 100 150
0

10

20

30

40

50

60

70

80

90
f* = 316.906863

1234

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0 50 100 150
0

10

20

30

40

50

60

70

80

90
f* = 315.171614

1234

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 (a) (b)
Fig. 9: (a) Result of Tabu search applied to a
problem with 4 UAVs and 20 waypoints. (b) Result
with timing constraints (waypoint 22 to be visited
after waypoints 15 and 24)

tom right figure shows the result of the scenario with
heterogeneous UAVs and relative timing constraints. In
this scenario, again UAV1 can visit all waypoints and
UAV2 can only visit waypoints 3 and 4. The timing
constraints are that waypoint 4 should be visited after
waypoints 5 and 6. As shown, the final result satisfies
all of the constraints by having UAV2 just visit way-
point 3 and UAV1 taking care of the rest of waypoints.

To show the capability of the algorithm on larger prob-
lems, an example with 4 UAVs and 20 waypoints is
shown in Figs. 9(a,b). Fig. 9(a) shows the solution
with no constraints, while Fig. 9(b) has two timing con-
straints that force waypoint 22 to be visited after way-
points 15 and 24. As shown, the solution in Fig. 9(b)
gives a cost (315.7) that is slightly lower than the cost
(316.9) for the solution in Fig. 9(a). In the optimal
case this should not be the case since Fig. 9(a) has no
constraints. However, the Tabu search is a heuristic
method and optimality of the solution is not guaran-
teed. Many studies have shown that it is possible to
get very close to the optimal solution if the parame-
ters in the problem are chosen correctly. The initial
solution is another important factor in a Tabu search.
The initial solution impacts the convergence rate for
the algorithm, and it can also effects the final solu-
tion. However, in 2000 trials of this UAV problem with
different initial conditions, the result shows that more
than 95% of the solutions are within 3% of the best
solution. The computation time for these trials using
a non-optimized code in MATLAB, varies between 12
to 15 seconds. Better results can be achieved by using
more efficient codes.

The Tabu solutions in this section meet the relative
timing constraints by arranging the vehicle paths so
that the UAVs arrive at the waypoints at the correct
times. However, with complicated constraints of the
type shown in Fig. 2(b), it is possible that this sub-
optimal approach could result in a poor solution. The
solution in Section 2 was to add loitering times to in-
crease the number of degrees of freedom in the prob-
lem, thereby yielding better solutions. Loitering could
be added to Tabu search by including (discrete) time
increments to the solution sequence in Fig. 7. These
times would then be used to separate the arrival and

departure times of the preceding UAV at the preceding
WP number.

5 Conclusions

This paper presents an extension of the multiple UAV
task allocation problem that explicitly includes the rel-
ative timing constraints found in many mission scenar-
ios. This not only allows us to determine which ve-
hicle should go to each waypoint, but it also allows
us to account for the required ordering and relative
timing in the task assignment. The allocation prob-
lem was also extended to include loiter times as extra
(continuous) degrees of freedom to ensure that, even
with very complicated timing constraints, feasible so-
lutions still exist. Simulation results clearly showed
that adding these timing constraints to the problem
increases the computational time when the constraints
are active (i.e., “unnatural”). The constrained alloca-
tion problem was also formulated in a way that can be
solved using Tabu search, which was demonstrated to
provide good solutions in reasonable computation times
for large problems that are very difficult to solve using
the exact or approximate decomposition methods.

Acknowledgments
Research funded in part by AFOSR grant # F49620-
01-1-0453.

References

[1] P. Chandler, M. Pachter, D. Swaroop, J. Fowler, et al.
“Complexity in UAV cooperative control,” ACC 2002.
pp. 1831-1836

[2] J. Bellingham, M. Tillerson, A. Richards, and J. How,
“Multi-Task Allocation and Path Planning for Cooper-
ating UAVs,” Second Annual Conference on Cooperative
Control and Optimization, Nov 2001.

[3] C. Schumaker, P. Chandler, S. Rasmussen, “Task Al-
location for Wide Area Search Munitions via Network
Flow Optimization” AIAA GNC, Aug. 2001.

[4] A. Bemporad and M. Morari, “Control of Systems Inte-
grating Logic, Dynamics, and Constraints,” Automat-
ica, Pergamon/Elsevier Science, Vol. 35, pp. 407-427,
1999.

[5] A. Richards, J. Bellingham, M. Tillerson, and J. P. How,
“Co-ordination and Control of Multiple UAVs,” AIAA
Guidance, Navigation, and Control Conference, Mon-
terey, CA, August 2002. AIAA Paper 2002-4588

[6] F. Glover and M. Laguna, Tabu Search, Kluwer
Acad. Publ., 1997.

[7] K. P. O’Rourke, T. G. Bailey, R. Hill and W. B. Carlton,
“Dynamic Routing of Unmanned Aerial Vehicles Using
Reactive Tabu Search,” Military Operations Research
Journal, Vol.6, 2000.

[8] M. Gendreau, A. Hertz and G. Laporte , “A Tabu
Search Heuristic for the Vehicle Routing Problem,”
Management Science, Vol. 40, pp. 1276-1289, 1994.

[9] E. D. Taillard, P. Badeau, M. Gendreau, F. Guertin,
J. Y. Potvin, “A Tabu search heuristic for the vehicle
routing problem with soft time windows,” Transporta-
tion science Vol. 31, pp. 170-186, 1997.

[10] A. V. Breedam, “Comparing Descent Heuristics and
Metaheuristics for the Vehicle Routing Problem”, Com-
puters and Operations Research, Vol.28, pp. 289-315,
2001.

